Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058210

RESUMO

The periaqueductal gray (PAG) is a significant modulator of both analgesic and fear behaviors in both humans and rodents, but the underlying circuitry responsible for these two phenotypes is incompletely understood. Importantly, it is not known if there is a way to produce analgesia without anxiety by targeting the PAG, as modulation of glutamate or GABA neurons in this area initiates both antinociceptive and anxiogenic behavior. While dopamine (DA) neurons in the ventrolateral PAG (vlPAG)/dorsal raphe display a supraspinal antinociceptive effect, their influence on anxiety and fear are unknown. Using DAT-cre and Vglut2-cre male mice, we introduced designer receptors exclusively activated by designer drugs (DREADD) to DA and glutamate neurons within the vlPAG using viral-mediated delivery and found that levels of analgesia were significant and quantitatively similar when DA and glutamate neurons were selectively stimulated. Activation of glutamatergic neurons, however, reliably produced higher indices of anxiety, with increased freezing time and more time spent in the safety of a dark enclosure. In contrast, animals in which PAG/dorsal raphe DA neurons were stimulated failed to show fear behaviors. DA-mediated antinociception was inhibitable by haloperidol and was sufficient to prevent persistent inflammatory pain induced by carrageenan. In summary, only activation of DA neurons in the PAG/dorsal raphe produced profound analgesia without signs of anxiety, indicating that PAG/dorsal raphe DA neurons are an important target involved in analgesia that may lead to new treatments for pain.


Assuntos
Ansiedade/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Dor/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Analgesia/métodos , Animais , Núcleo Dorsal da Rafe/metabolismo , Medo/fisiologia , Masculino , Camundongos Transgênicos
2.
Physiol Rep ; 7(8): e14047, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31008554

RESUMO

Hypothalamic magnocellular neurosecretory cells (MNCs) undergo dramatic structural reorganization during lactation in female rats that is thought to contribute to the pulsatile secretion of oxytocin critical for milk ejection. MNCs from male rats generate robust bursts of GABAergic synaptic currents, a subset of which are onset-synchronized between MNC pairs, but the functional role of the IPSC bursts is not known. To determine the physiological relevance of IPSC bursts, we compared MNCs from lactating and non-lactating female rats using whole-cell recordings in brain slices. We recorded a sixfold increase in the incidence of IPSC bursts in oxytocin (OT)-MNCs from lactating rats compared to non-lactating rats, whereas there was no change in IPSC bursts in vasopressin (VP)-MNCs. Synchronized bursts of IPSCs were observed in pairs of MNCs in slices from lactating rats. Our data indicate, therefore, that IPSC bursts are upregulated specifically in OT-MNCs during lactation, and may, therefore, contribute via rebound depolarization to the spike trains in OT neurons that lead to reflex milk ejection.


Assuntos
Potenciais Pós-Sinápticos Inibidores , Lactação/fisiologia , Células Neuroendócrinas/fisiologia , Ocitocina/metabolismo , Animais , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Lactação/metabolismo , Células Neuroendócrinas/metabolismo , Ratos , Ratos Wistar , Vasopressinas/metabolismo
3.
Neuron ; 97(5): 1137-1152.e5, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429933

RESUMO

Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Região CA3 Hipocampal/fisiologia , Memória/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Região CA3 Hipocampal/química , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musgosas Hipocampais/química , Sinapses/química
4.
Front Neuroanat ; 11: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28377698

RESUMO

The striatum is key for action-selection and the motivation to move. Dopamine and acetylcholine release sites are enriched in the striatum and are cross-regulated, possibly to achieve optimal behavior. Drugs of abuse, which promote abnormally high dopamine release, disrupt normal action-selection and drive restricted, repetitive behaviors (stereotypies). Stereotypies occur in a variety of disorders including obsessive-compulsive disorder, autism, schizophrenia and Huntington's disease, as well as in addictive states. The severity of drug-induced stereotypy is correlated with induction of c-Fos expression in striosomes, a striatal compartment that is related to the limbic system and that directly projects to dopamine-producing neurons of the substantia nigra. These characteristics of striosomes contrast with the properties of the extra-striosomal matrix, which has strong sensorimotor and associative circuit inputs and outputs. Disruption of acetylcholine signaling in the striatum blocks the striosome-predominant c-Fos expression pattern induced by drugs of abuse and alters drug-induced stereotypy. The activity of striatal cholinergic interneurons is associated with behaviors related to sensory cues, and cortical inputs to striosomes can bias action-selection in the face of conflicting cues. The neurons and neuropil of striosomes and matrix neurons have observably separate distributions, both at the input level in the striatum and at the output level in the substantia nigra. Notably, cholinergic axons readily cross compartment borders, providing a potential route for local cross-compartment communication to maintain a balance between striosomal and matrix activity. We show here, by slice electrophysiology in transgenic mice, that repetitive evoked firing patterns in striosomal and matrix striatal projection neurons (SPNs) are interrupted by optogenetic activation of cholinergic interneurons either by the addition or the deletion of spikes. We demonstrate that this cholinergic modulation of projection neurons is blocked in brain slices taken from mice exposed to amphetamine and engaged in amphetamine-induced stereotypy, and lacking responsiveness to salient cues. Our findings support a model whereby activity in striosomes is normally under strong regulation by cholinergic interneurons, favoring behavioral flexibility, but that in animals with drug-induced stereotypy, this cholinergic signaling breaks down, resulting in differential modulation of striosomal activity and an inability to bias action-selection according to relevant sensory cues.

5.
Elife ; 52016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27661450

RESUMO

Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system's versatility.

6.
Proc Natl Acad Sci U S A ; 112(2): 584-9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548191

RESUMO

Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.


Assuntos
Neurônios Colinérgicos/fisiologia , Sono REM/fisiologia , Tegmento Mesencefálico/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Channelrhodopsins , Colina O-Acetiltransferase/genética , Neurônios Colinérgicos/citologia , Tecnologia de Fibra Óptica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sono REM/genética , Tegmento Mesencefálico/anatomia & histologia , Vigília/genética , Vigília/fisiologia
7.
J Neurosci ; 26(24): 6643-50, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16775153

RESUMO

The hypothalamic paraventricular nucleus (PVN) integrates preautonomic and neuroendocrine control of energy homeostasis, fluid balance, and the stress response. We recently demonstrated that glucocorticoids act via a membrane receptor to rapidly cause endocannabinoid-mediated suppression of synaptic excitation in PVN neurosecretory neurons. Leptin, a major signal of nutritional state, suppresses CB(1) cannabinoid receptor-dependent hyperphagia (increased appetite) in fasting animals by reducing hypothalamic levels of endocannabinoids. Here we show that glucocorticoids stimulate endocannabinoid biosynthesis and release via a Galpha(s)-cAMP-protein kinase A-dependent mechanism and that leptin blocks glucocorticoid-induced endocannabinoid biosynthesis and suppression of excitation in the PVN via a phosphodiesterase-3B-mediated reduction in intracellular cAMP levels. We demonstrate this rapid hormonal interaction in both PVN magnocellular and parvocellular neurosecretory cells. Leptin blockade of the glucocorticoid-induced, endocannabinoid-mediated suppression of excitation was absent in leptin receptor-deficient obese Zucker rats. Our findings reveal a novel hormonal crosstalk that rapidly modulates synaptic excitation via endocannabinoid release in the hypothalamus and that provides a nutritional state-sensitive mechanism to integrate the neuroendocrine regulation of energy homeostasis, fluid balance, and the stress response.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Glucocorticoides/fisiologia , Leptina/fisiologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Sinapses/fisiologia , Animais , Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/farmacologia , AMP Cíclico/metabolismo , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Glucocorticoides/farmacologia , Glicerídeos/metabolismo , Técnicas In Vitro , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Obesidade/genética , Obesidade/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sinapses/efeitos dos fármacos
8.
J Physiol ; 569(Pt 3): 751-60, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16239276

RESUMO

Exogenous cannabinoids have been shown to significantly alter neuroendocrine output, presaging the emergence of endogenous cannabinoids as important signalling molecules in the neuroendocrine control of homeostatic and reproductive functions, including the stress response, energy metabolism and gonadal regulation. We showed recently that magnocellular and parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus and supraoptic nucleus (SON) respond to glucocorticoids by releasing endocannabinoids as retrograde messengers to modulate the synaptic release of glutamate. Here we show directly for the first time that both of the main endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are released in an activity-dependent fashion from the soma/dendrites of SON magnocellular neurones and suppress synaptic glutamate release and postsynaptic spiking. Cannabinoid reuptake blockade increases activity-dependent endocannabinoid levels in the region of the SON, and results in the inhibition of synaptically driven spiking activity in magnocellular neurones. Together, these findings demonstrate an activity-dependent release of AEA and 2-AG that leads to the suppression of glutamate release and that is capable of shaping spiking activity in magnocellular neurones. This activity-dependent regulation of excitatory synaptic input by endocannabinoids may play a role in determining spiking patterns characteristic of magnocellular neurones under stimulated conditions.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Núcleo Supraóptico/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Benzoxazinas , Compostos de Benzil/farmacologia , Canabinoides/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glicerídeos/metabolismo , Técnicas In Vitro , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptores Pré-Sinápticos/efeitos dos fármacos , Receptores Pré-Sinápticos/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...